
Security Misconfiguration 
 

 

 The system could be completely compromised without 

you knowing it. All your data could be stolen or modified 

slowly over time. 

 Recovery costs could be expensive. 

 Security misconfiguration can happen at any level of an 

application stack, including the platform, web server, 

application server, framework, and custom code. 

 Developers and network administrators need to work 

together to ensure that the entire stack is configured 

properly 

 Automatic patches! 

 Users with their own accounts that may attempt to 

compromise the system. Also consider insiders wanting to 

disguise their actions. 

 Attacker accesses default accounts, unused pages, 

unpatched flaws, unprotected files and directories, etc. 

 

Have you performed the proper security hardening across the 

entire application stack? 

1. Do you have a process for keeping all your software up to date? 

This includes the OS, Web/App Server, DBMS, applications, and 

all code libraries. 

2. Is everything unnecessary disabled, removed, or not installed 

(e.g. ports, services, pages, accounts, privileges)? 

3. Are default account passwords changed or disabled? 

4. Is your error handling set up to prevent stack traces and other 

overly informative error messages from leaking? 



5. Are the security settings in your development frameworks (e.g., 

Struts, Spring, ASP.NET) and libraries understood and 

configured properly? 

 

The primary recommendations are to establish all of the 

following: 

1. A repeatable hardening process that makes it fast and easy to 

deploy another environment that is properly locked down. 

Development, QA, and production environments should all be 

configured identically. This process should be automated to 

minimize the effort required to setup a new secure 

environment. 

2. A process for keeping abreast of and deploying all new 

software updates and patches in a timely manner to each 

deployed environment. This needs to include all code libraries 

as well, which are frequently overlooked. 

3. A strong application architecture that provides good 

separation and security between components. 

4. Consider running scans and doing audits periodically to help 

detect future misconfigurations or missing patches. 

Example Scenarios 

Scenario #1: Your application relies on a powerful framework like 

Struts or Spring. XSS flaws are found in these framework components 

you rely on. An update is released to fix these flaws but you don’t 

update your libraries. Until you do, attackers can easily find and 

exploit these flaws in your app. 

Scenario #2: The app server admin console is automatically installed 

and not removed. Default accounts aren’t changed. Attacker 



discovers the standard admin pages are on your server, logs in with 

default passwords, and takes over. 

Scenario #3: Directory listing is not disabled on your server. Attacker 

discovers she can simply list directories to find any file. Attacker finds 

and downloads all your compiled Java classes, which she reverse 

engineers to get all your custom code. She then finds a serious access 

control flaw in your application. 

Scenario #4: App server configuration allows stack traces to be 

returned to users, potentially exposing underlying flaws. Attackers 

love the extra information error messages provide. 

 


