Hardening web application (DOS and Application

firewalls

Margus Ernits

2013

Contents

Glossary

1

2

Protecting Web Application Against (D)DOS Attacks

1.1
1.2
1.3
1.4
1.5
1.6

Introduction
Pre-Requirements L
Software and hardwareo Lo o
Learning Objectives o e
Setting up the Virtual Environment - VirtualBox sample
Installation of the WordPress
1.6.1 Testing Your WordPress Installation against simpler DOS attacks
1.6.2 Hardening WordPress Installation

Protecting an Insecure Web Application

2.1

2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9

Introduction
21.1 LabScenario.
Pre-Requirements L
Learning Objectives e
Setting up the Virtual Environment00 L.
Installation of Damn Vulnerable Web Application
25.1 Introductionto DVWA L
2.5.2 Testing vulnerabilities oL L
Installation of SQL Application Firewall
Installation of Mod Security Application Firewall
Securing Web Application Configuration

Final System Architecture

M= N B e e N S)

—_
(=]

List of Figures

2.1 Damn Vulnerable Web Application - defaultpage

2.2 Setting DVWA Security Level to Low . .
2.3 Architecture of Secured Web Application

List of Tables

1.1 Hardware requirements for the (D)DOS lab

2.1 Hardware requirements for DVWA lab . .

Glossary

CSRF Cross Site Request Forgery. 14, 15

DVWA Damn Vulnerable Web Application. 14, 17

HTTP Hypertext Transfer Protocol. 4, 5

IP Internet Protocol. 4

MySQL an open source relational database management system. 5, 7

OVA Open Virtualization Format. 6, 15

OWASP Open Web Application Security Project. 18

SQL Structured Query Language. 15

SQLi SQL Injection. 15
TLS Transport Layer Security. 13, 21
UDP User Datagram Protocol. 4

XSS Cross Site Scripting. 14, 15

1 Protecting Web Application Against (D)DOS
Attacks

”If you tell me, I will listen. If you show me, I will see. If you let me experience, I will

learn” — Lao Tzu (6th Century BC)

1.1 Introduction

This goal of this lab is secure a web application — WordPress against (D)DOS attacks to the level
where main limitation becomes a throughput of the network. Installed and hardened server must

recover after attack is ended.

Web application WordPress are used because misbehave of the default installation which can not

take reasonable load.

1.2 Pre-Requirements

1. Preliminary GNU/Linux course ??;
2. Preliminary test ?? (theory and practice);

3. Knowledge about HTTP (different request types, virtual hosts, status codes), IP and aliases,
UDP.

If renewal is needed then following materials are suitable for rehearsal the basics of the HTTP ! 2,

Tnet.tutsplus.com - tools and tips - HTTP part 1
Znet.tutsplus.com - tools and tips - HTTP part 1

http://net.tutsplus.com/tutorials/tools-and-tips/http-the-protocol-every-web-developer-must-know-part-1/
http://net.tutsplus.com/tutorials/tools-and-tips/http-the-protocol-every-web-developer-must-know-part-2/

Table 1.1: Hardware requirements for the (D)DOS lab

Hardware Server Client
RAM >=512M B >=1GB
HDD >= 8G'B (dynamic disk) | >= 16G B (dynamic disk)
NIC 1 NAT NAT
NIC 2 HostOnly HostOnly
OS Ubuntu Server 12.04 LTS | Ubuntu Desktop 12.04 LTS

1.3 Software and hardware

Students must have possibility to run at least two virtual machines with configuration seen in ta-

ble 1.1.

GNU/Linux distribution Ubuntu Server 12.04 LTS 64bit, WordPress — latest version available, MySQL

from Ubuntu repositories, Apache2 web server from repositories, GNU/Linux Ubuntu Client 12.04

LTS 64bit for performing load generation with apache2 utils.

1.4 Learning Objectives

Student installs and configures the apache2 web server and WordPress web application with MySQL
database. Student is able to use caching technologies to protect web application against simpler
DOS attacks. Student configures web service and demonstrates that can be easily take offline using

simple load generator. Minimal level: Student configures proper caching and demonstrates that web

application survives same attack.

1.5 Setting up the Virtual Environment - VirtualBox sample

Two virtual machines are needed in this lab: Server and Client. Download server and client OVA files

from the following links: http://elab.itcollege.ee:8000/infra klient small.ova http:

//elab.itcollege.ee:8000/infra_server.ova

Import virtual machines (If your host computer has only 4GB RAM, then reduce client machine

memory to 1GB)

Start both machines. If you got an error about host only network then open Main Menu, choose File

Preferences and choose Network and add Host Only Network.

Username and password for both machines are student.

http://elab.itcollege.ee:8000/infra_klient_small.ova
http://elab.itcollege.ee:8000/infra_server.ova
http://elab.itcollege.ee:8000/infra_server.ova

Student user are in sudo group and can start administrator shell with sudo command.

Log on to client and add two addresses on /etc/hosts

echo "192.168.56.200 wp.planet.zz">>/etc/hosts

Test wp.planet.zz with ping command.

1.6 Installation of the WordPress

All following commands must executed as root user. To get root permissions in Ubuntu Server used

in this lab type:

sudo -1

For installing new software, update the local package cache in client and server:

apt-get update

Upgrade both systems:

apt-get dist-upgrade

Install apache2 web server and MySQL database on server:

apt-get install apache2 mysql-server ssh php5 phpb-mysql
apt-get install apache2-utils libapache2-mod-phpb

Download the latest version of WordPress engine on server:

wget http://wordpress.org/latest.tar.gz

Unpack downloaded latest.tar.gz archive to server’s /var/www directory using tar utility:

sudo tar zxvf latest.tar.gz --directory=/var/www/

On server, create new MySQL database called wp and database user student. Grant all privileges on

database wp to user student:

mysql -u root -p

create database wp;

create user student;

GRANT ALL PRIVILEGES ON wp.* TO 'student'@'localhost' IDENTIFIED BY 'student';
quit

On server, create a new virtual host for wordpress

cp /etc/apache2/sites-available/default /etc/apache2/sites-available/wp

On server, change the owner and the group to apache2 system user/group for wordpress directories

and files for ensure that web server can read and write those files.

chown www-data:www-data /var/www/wordpress -R

On server, change a document root directory (DocumentRoot) for new virtual-host and add Server-

Name field to virtualhosts configuration file /etc/apache2/sites-available/wp

ServerName wp.planet.zz
#DocumentRoot /var/www

DocumentRoot /var/www/wordpress

To enable new virtualhost for WordPress use aZensite utility (on server)

aZ2ensite wp

Change wordpress configuration file /var/www/wordpress/wp-config-sample.php

Set correct values for defines DB NAME, DB_USER, DB PASSWORD as:

/** MySQL database name */
define('DB_NAME', 'wp');

/** MySQL database username */
define('DB _USER', 'student');

/** MySQL database password */
define('DB_PASSWORD', 'student');

Copy sample configuration file to the real configuration file.

cp -a /var/www/wordpress/wp-config-sample.php /var/www/wordpress/wp-config.php

Reload apache configuration files:

service apache2 reload

Go to address http://wp.planet.zz/ using web browser.
Enter values for Site Title, username, password and an e-mail

Choose Install

1.6.1 Testing Your WordPress Installation against simpler DOS attacks

Discussion

How many requests per second the default installation of WordPress will servef
How many parallel connections this site should handle?

How many parallel connections and requests can produce one attacker?
When the website is down?

How many seconds client probably waits before website considered as dead?

Install apache2 utils on CLIENT computer, not in the server computer.

sudo apt-get update
sudo apt-get install apache2-utils

In case of Fedora/CentOS/RH/Oracle Linux install httpd-utils package.

Execute Apache Benchmark program ab with parameters discussed:

ab —c<NO_CONN> -t<TIME> http://wp.planet.zz/

flag c - parallel connections flag t - time for test

ab -c600 -t20 http://wp.planet.zz/

In last example the ab utility makes 600 parallel connections and test takes 20 seconds. Test results
Store test results and the command line used for tests. Write down request per second. No of failed

requests and No of completed requests.

1.6.2 Hardening WordPress Installation

After successful load generation using ab command, the server is extremely slow and unresponsive.

Discussion

Why You can not login into server?
Look at the server console. What is the OOM? What is the 0O0OM killer?

If needed, reboot the server. To guarantee log in possibility into server under attack disable swap

file.

Disable swap (edit /etc/fstab file or use swapoff command)

swapoff -a

Disable OOM killer for MySQL database. In newer kernels write -1000 to oom_score_adj file.

echo "-1000" > /proc/$(pidof mysqld)/oom_score_adj

For backward compatibility with old kernels (2.6.XX series) you can use oom_adj file

echo "-17" > /proc/$(pidof mysqld)/oom_adj

10

Documentation about proc filesystem and OOM can be found from kernel.org *
Optional task: Modify mysql upstart config file to set OOM adjustment score.

Install WordPress Supercache plugin. Change Permalinks settings under custom structure:

/index.php/?p=Yipost_idJ

Test the caching with ab command as previously.
To install varnish web accelerator change the apache service port to 8080.

In file /etc/apache2/ports.conf change 80 > 8080 like:

NameVirtualHost *:8080
Listen 8080

Or just download new file using wget

cd /etc/apache?2
mv ports.conf /root/ports.conf.old

wget http://elab.itcollege.ee:8000/Configs/apache2/ports.conf

Change all virtual hosts to use new 8080 port using text editor or sed command.

sed 's/:80>/:8080>/' -i /etc/apache2/sites-enabled/wp

Install varnish web accelerator

apt-get install varnish

Open configuration file for varnish defaults: /etc/default/varnish and change default listen port from
6081 to 80 varnis in DAEMON_OPTS section.

Skernel.org - the proc filesystem http://www.kernel.org/doc/Documentation/filesystems/proc.txt

11

http://www.kernel.org/doc/Documentation/filesystems/proc.txt

DAEMON_OPTS="-a :6081 \
-T localhost:6082 \
-f /etc/varnish/default.vcl \
-S /etc/varnish/secret \

-s malloc,256m"

The port is specified with flag -a

DAEMON _0OPTS="-a *:80 \
-T localhost:6082 \
-f /etc/varnish/default.vcl \
-S /etc/varnish/secret \

-s malloc,256m"

Restart apache and varnish services

service apache2 restart

service varnish restart

Test your result using netstat command

netstat -1lp | grep varnish

Command output

student@opiise:~$ netstat -1lp | grep varnish

tcp 0 0 * 1k LISTEN 1869/varnish
tcp 0 0 localhost:6082 * 1k LISTEN 1868/varnish

o

Test new system with AB utility using exactly the same test parameters and conditions as before

varnish
Discussion

How many requests are completed during the test?
How many requests per second the hardened WordPress installation can take?
Is it now safer or attacker can take it down with same effort?

(You can guess that something is still wrong, and figure out what exactly)

12

Discussion

What can be used as possible alternative for warnish web accelerator?
What about TLS, do You see any problems?

What about authenticated users?

Additional and optional reading:
Making wordpress shine with Varnish caching system
Making wordpress shine with Varnish caching system part 2

Full Circle Magazine 57

13

http://kaanon.com/blog/work/making-wordpress-shine-varnish-caching-system-part-1
http://kaanon.com/blog/varnish/making-wordpress-shine-varnish-caching-system-part-2
http://www.google.com/producer/editions/CAowvZtX/full_circle_magazine_57_lite

2 Protecting an Insecure Web Application

I will newer blindly copy paste commands from manuals specially when logged as root!

— Experienced IT system administrator.

2.1 Introduction

The hands-on laboratory is mean to teach system administrator’s how to protect insecure web ap-

plication from common attacks like injection’s, XSS, CSRF, brute force, file upload and file inclusion.

Damn Vulnerable Web Application DVWA is used as role of insecure application. Several vulnerable

web application alternatives exists http://blog.taddong.com/2011/10/hacking-vulnerable-web-appli
html

2.1.1 Lab Scenario

Lab participant acts as system administrator for small company which has several web applications.
One legacy application is tremendously vulnerable for common type of attacks. Company ordered
new web application to replace old and vulnerable service. However old application must survive at
least few month’s before being replaced. Till that time system administrator have high criticality task
to protect this vulnerable system. Blocking IP addresses is not a solution because client’s requests
can be originated from any location, although fixing all programming errors takes too long and new

version of software was developed for that purposes.

2.2 Pre-Requirements

This hands-on laboratory is designed to students who have knowledge and skills for working with

GNU/Linux command line, basic networking and HTTP(S) and understanding text editing.

14

http://blog.taddong.com/2011/10/hacking-vulnerable-web-applications.html
http://blog.taddong.com/2011/10/hacking-vulnerable-web-applications.html

Table 2.1: Hardware requirements for DVWA lab

Hardware Server Client
RAM >=512MB >=1GB
HDD >= 8G'B (dynamic disk) | >= 16G B (dynamic disk)
NIC 1 NAT NAT
NIC 2 HostOnly HostOnly
0OsS Ubuntu Server 12.04 LTS | Ubuntu Desktop 12.04 LTS

Students must have possibility to run at least two virtual machines with configuration seen in ta-
ble 2.1

2.3 Learning Objectives

Student is able to install different application firewalls such as SQL firewall and web application
firewall. Minimal level is reached if the student demonstrates that different types of attacks are
possible and successful against the vulnerable web application, installs SQL firewall and demon-
strates that basic SQLi attacks are blocked, demonstrates that several web application attacks are
still possible after installing the SQL firewall such as reflected XSS and stored XSS, command injec-
tion and CSRF, installs application firewall before web application and demonstrates that previously

succeeded attacks (at least XSS) are stopped.

2.4 Setting up the Virtual Environment

Two virtual machines are needed in this lab: Server and Client. Download server and client OVA

files from the following links:
http://elab.itcollege.ee:8000/infra_klient_small.ova
http://elab.itcollege.ee:8000/infra_server.ova

Import virtual machines (If your host computer has only 4GB RAM, then reduce client machine

memory to 1GB)

Start both machines. If you got an error about host only network then open Main Menu, choose File

Preferences and choose Network and add Host Only Network.
Username and password for both machines are student.

Student user are in sudo group and can start administrator shell with sudo command.

15

http://elab.itcollege.ee:8000/infra_klient_small.ova
http://elab.itcollege.ee:8000/infra_server.ova

2.5 Installation of Damn Vulnerable Web Application

2.5.1 Introduction to DVWA

Ensure that you have administrator rights

sudo -i

Update local package cache

apt-get update

Ensure that unzip package is installed

type unzip || apt-get install unzip

Install apapache web server, mysql server and php5

apt-get install apache2 mysqgl-server ssh php5 phpb-mysql libapache2-mod-phpb

Dowload DVWA using web get utility wget

wget http://dvwa.googlecode.com/files/DVWA-1.0.7.zip

unzip DVWA-1.0.7.zip

mv dvwa /var/www
nano /var/www/dvwa/config/config.inc.php
$ DVWA['db user'] = 'root';

$ DVWA['db_password'] = 'student';
$ DVWA['db_database'] = 'dvwa';

For save use CTRL + X

16

Next: the setup of DVWA database

http://ServerI P/dvwa/setup.php

Click the Create/Reset Database

Log into DVWA http://Serverl P/dvwa/ Username : admin Password : password
The main page of DVWA should appear (Figure 2.1)

Change DVWA Security level to low (Figure 2.2)

. Welcome to Damn Vulnerable Web App!

Instructions | Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is damn vulnerable. Its main goals are
| to be an aid for security professionals to test their skills and tools in a legal environment, help web developers

Setup better understand the processes of securing web applications and aid teachers/students to teach/learn web
application security in a class room environment.
Brute Force WARNING!

Command Execution
CSRF

Damn Vulnerable Web App is damn vulnerable! Do not upload it to your hosting provider's public html folder or
any internet facing web server as it will be compromised. We recommend downloading and installing
onto a local machine inside your LAN which is used solely for testing.

File Inclusion

|
|
|
|
SQL Injection |
|
|
|
|

Disclaimer
SQL Injection (Blind) We do not take responsibility for the way in which any one uses this application. We have made the purposes of
the application clear and it should not be used maliciously. We have given warnings and taken measures to
Upload prevent users from installing DVWA on to live web servers. If your web server is compromised via an installation
XSS reflected of DVWA itis not our responsibility it is the responsibility of the person/s who uploaded and installed it.
XSS stored General Instructions
The help button allows you to view hits/tips for each vulnerability and for each security level on their respective
DVWA Security | page.
PHP Info |
About |
Logout |

Username: admin
Security Level: low
PHPIDS: disabled

Figure 2.1: Damn Vulnerable Web Application - default page

17

DVWA Security *

Script Security

Security Level is currently low.
You can set the security level to low, medium or high.

The security level changes the vulnerability level of DVWA.

low : | Submit

Figure 2.2: Setting DVWA Security Level to Low

2.5.2 Testing vulnerabilities

For understanding a defence of web application a basic offensive knowledge and skills are needed.
However, this lab focused on defensive methods and will not provide knowledge about different
OWASP top ten.

Common vulnerabilities

Try the following vulnerabilities (find out how)

8.8.8.8; sed 's/</UUUU/"' ../../config/config.inc.php
#Find out directory and file structure of \gls{DVWA}
8.8.8.8; 1s -1

8.8.8.8; 1s -1 ../../

8.8.8.8; sed 's/<//'" ../../../../wordpress/wp-config.php
8.8.8.8; touch /var/tmp/new_file.txt

8.8.8.8; 1ls /var/tmp/

; grep session.cookie httponly /etc/php5/apache2/php.ini

<script>var i=''; document.write(i);</script>

18

1' union select BENCHMARK(100000000,ENCODE('hello', 'goodbye')),1; # —-—
2' UNION SELECT TABLE_SCHEMA, TABLE_NAME FROM information_schema.TABLES;# -—-
3' union select TABLE NAME,COLUMN_NAME from information_schema.columns; # —-'

2.6 Installation of SQL Application Firewall

Install the GreenSQL database firewall.

Installing GreenSQL from pre built package (FOR BEGINNERS)

wget http://elab.itcollege.ee:8000/Day3/greensql-fw_1.3.0_amd64.deb
dpkg -i greensql-fw_1.3.0_amd64.deb
apt-get install -f

#Modify existing virtualhost or create new virtualhost.
cd /var/www/

1n -s /usr/share/greensql-fw/ greensql

cd /var/www/greensql

chmod 0777 templates_c

Installing GreenSQL Open Source frou source code (For Advanced Students)

Download and install the greensql-fw

wget -0 greensql-fw-1.3.0.tar.gz \
"http://elab.itcollege.ee:8000/greensql-fw-1.3.0.tar.gz"

#Extract source code

tar zxvf greensql-fw-1.3.0.tar.gz
#Install pre requirements

apt-get install flex
apt-get install bison

19

apt-get install devscripts

apt-get install debhelper

apt-get install libpcre3-dev

apt-get install libmysqlclient-dev

apt-get install libpg-dev

#Build deb package (In this case it fails. Find out why.)
./build.sh

#Install package with dpkg

dpkg -i greensql-fw_1.3.0.deb

#Mod<ify existing virtualhost or create new virtualhost.
cd /var/www/

1n -s /usr/share/greensql-fw/ greensql

cd greensql

chmod 0777 templates_c

2.7 Installation of Mod Security Application Firewall

sudo apt-get update

sudo apt-get install libxml2 libxml2-dev libxml2-utils

sudo apt-get install libapache2-modsecurity

1n -sf /usr/1lib/x86_64-linux-gnu/libxml2.so0.2 /usr/lib/libxml2.so0.2

sudo mv /etc/modsecurity/modsecurity.conf-recommended /etc/modsecurity/modsecurity.conf

cd /tmp

wget http://downloads.sourceforge.net/project/mod-security/modsecurity-crs/0-CURRENT/modsecurity-crs_2.2.5.tar.gz
sudo tar zxf modsecurity-crs_2.2.5.tar.gz

sudo cp -R modsecurity-crs_2.2.5/* /etc/modsecurity/

sudo rm modsecurity-crs_2.2.5.tar.gz

sudo rm modsecurity-crs_2.2.5 -r

sudo mv /etc/modsecurity/modsecurity_crs_10_setup.conf.example /etc/modsecurity/modsecurity_crs_10_setup.conf

To enable rulesets create /etc/apache2/conf.d/modsecurity.conf file with following content:

<ifmodule mod_security2.c>
SecRuleEngine On

</ifmodule>

20

sudo a2enmod mod-security

sudo service apache2 restart

File /etc/apache2/mods-enabled/mod-security.conf

<IfModule security2_module>
Default Debian dir for modsecurity's persistent data

SecDataDir /var/cache/modsecurity

Include all the *.conf files in /etc/modsecurity.
Keeping your local configuration in that directory
will allow for an easy upgrade of THIS file and
make your life easter
Include "/etc/modsecurity/*.conf"
Include "/etc/modsecurity/activated_rules/*.conf"
Include "/etc/modsecurity/optional_rules/*.conf"
Include "/etc/modsecurity/base_rules/*.conf"
</IfModule>

Test the previous vulnerabilities and demonstrate that they failed to pass.

2.8 Securing Web Application Configuration

+ Setting Document Cookies to HTTP Only
« Fixing Database Privileges
« Separating Web Applications (for internal use and for external use)

Install Nginx as TLS termination according to this guide: https://wiki.itcollege.ee/index.

php/TLS_termineerimine nginx_abil

Optional task: Find a Varnish firewall project and install the Varnish firewall.

21

https://wiki.itcollege.ee/index.php/TLS_termineerimine_nginx_abil
https://wiki.itcollege.ee/index.php/TLS_termineerimine_nginx_abil

2.9 Final System Architecture

Keep in mind that final architecture contains several components to provide layered security for

insecure web application as seen on Figure 2.3

SQL
Firewall

GreenSQL GPL
vesion

NGINX
TLS
Terminator

Figure 2.3: Architecture of Secured Web Application

22

	Glossary
	Protecting Web Application Against (D)DOS Attacks
	Introduction
	Pre-Requirements
	Software and hardware
	Learning Objectives
	Setting up the Virtual Environment - VirtualBox sample
	Installation of the WordPress
	Testing Your WordPress Installation against simpler DOS attacks
	Hardening WordPress Installation

	Protecting an Insecure Web Application
	Introduction
	Lab Scenario

	Pre-Requirements
	Learning Objectives
	Setting up the Virtual Environment
	Installation of Damn Vulnerable Web Application
	Introduction to DVWA
	Testing vulnerabilities

	Installation of SQL Application Firewall
	Installation of Mod Security Application Firewall
	Securing Web Application Configuration
	Final System Architecture

